pythonのコードを少し試す時にはjupyter notebookが便利なんだけど,お手軽にクラウド上で使えるものが無いかと探したら,google のColaboratoryが無料で使えて,共同編集もできるので便利。 GPU計算にも(多分)2日前位に対応したらしく,tensorflowとかKerasとかも使えるので,ディープラーニングでも遊べる。

CPUの情報

!cat /proc/cpuinfo
processor   : 0
vendor_id   : GenuineIntel
cpu family  : 6
model       : 63
model name  : Intel(R) Xeon(R) CPU @ 2.30GHz
stepping    : 0
microcode   : 0x1
cpu MHz     : 2300.000
cache size  : 46080 KB
physical id : 0
siblings    : 2
core id     : 0
cpu cores   : 1
apicid      : 0
initial apicid  : 0
fpu     : yes
fpu_exception   : yes
cpuid level : 13
wp      : yes
flags       : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms xsaveopt
bugs        :
bogomips    : 4600.00
clflush size    : 64
cache_alignment : 64
address sizes   : 46 bits physical, 48 bits virtual
power management:

processor   : 1
vendor_id   : GenuineIntel
cpu family  : 6
model       : 63
model name  : Intel(R) Xeon(R) CPU @ 2.30GHz
stepping    : 0
microcode   : 0x1
cpu MHz     : 2300.000
cache size  : 46080 KB
physical id : 0
siblings    : 2
core id     : 0
cpu cores   : 1
apicid      : 1
initial apicid  : 1
fpu     : yes
fpu_exception   : yes
cpuid level : 13
wp      : yes
flags       : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms xsaveopt
bugs        :
bogomips    : 4600.00
clflush size    : 64
cache_alignment : 64
address sizes   : 46 bits physical, 48 bits virtual
power management:

このCPUパワーを独占できるわけではないはずだが,いまのところ手元のMacBookと比べるとかなり速い(実行タイミングにより数割から数倍早い)

GPUの情報

!cat /proc/driver/nvidia/gpus/0000:00:04.0/information
Model:       Tesla K80
IRQ:         33
GPU UUID:    GPU-be0a1aaf-c92d-ce5e-6d53-1f064e6842f6
Video BIOS:      80.21.25.00.01
Bus Type:    PCI
DMA Size:    40 bits
DMA Mask:    0xffffffffff
Bus Location:    0000:00:04.0
Device Minor:    0

Kerasで作ったディープラーニングのプログラムを走らせると,GPUを使わない場合に比べて10から20倍早い。 Kerasのサンプルプログラムはこちらにあります。

Next Post Previous Post